Abstract
Cellular metabolism is a constant source of reactive oxygen species (ROS). The production of hydrogen peroxide (H2O2) is particularly relevant, due to its role in cellular physiology. H2O2 can act as a classical intracellular signaling molecule in several processes like cell proliferation, hormone synthesis and secretion, immune cell regulation, angiogenesis, and apoptosis. However, H2O2 overproduction and accumulation, derived from increased mitochondrial electron transport chain activity, glucose autoxidation, and increased polyol flux, contribute to an imbalance in the redox state of the cells. High concentration of H2O2 induces cellular dysfunction through oxidation of macromolecules like proteins, lipids, carbohydrates and nucleic acids. H2O2-induced oxidative damage can contribute to the development and progression of degenerative diseases such as diabetes mellitus. Indeed, chronic hyperglycemia has been shown to cause an increased H2O2 concentration and oxidative damage that contribute to the pathogenesis and progression of diabetes complications.
TIP Magazine Specialized in Chemical-Biological Sciences, distributed under Creative Commons License: Attribution + Noncommercial + NoDerivatives 4.0 International.